Thermomechanical Damage Modeling of F114 Carbon Steel
نویسندگان
چکیده
Abstract—The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.
منابع مشابه
AN INVESTIGATION TO BAINITE FORMATION MORPHOLOGIES IN NI-CR BEARING LOW CARBON STEELS THROUGH THERMOMECHANICAL PROCESSING
The presence of bainite in the microstructure of steels to obtain a proper combination of strength and toughness has always been desired. The previous works however have shown that the presence of preferred bainite morphologies in the microstructure of any steel would not be readily accessible. In addition, the appearance of different bainite morphologies in the microstructure of any steel is d...
متن کاملOptimization of thermomechanical parameters to produce an ultra-high strength compressor disk
Structural steels with very high strength levels are often referred to as ultrahigh-strength steels (UHSS). The usage of UHSS has been extensively studied in aerospace industries and offshore platforms. In this study, medium carbon low alloy steel (AMS6305) was thermomechanicaly treated to obtain an ultra-high strength bainitic steel for aircraft engine compressor disk. A novel themomechanical ...
متن کاملIsothermal Recrystallization Behavior of Cold-deformed Martensite in an Ultra-low-carbon Microalloyed Steel
One of the most promising ways to produce a grain-refined microstructure in some steel materials is the thermomechanical processing route of subcritical recrystallization annealing of a cold-deformed martensite structure. In the present study, the microstructural evolutions and the associated recrystallization kinetics under various subcritical annealing heat treatment conditions are explored i...
متن کاملThe Effect of Niobium on the Formation of Nanostructured Low Carbon Steel Using Martensite Treatment
The formation of nano/ultrafine grained ferrite in low carbon steels containing different amounts of niobium was investigated using thermomechanical treatment which consisted of annealing of 85% cold rolled martensite with different parameters. The specimens were characterized by optical and scanning electron microscopy and Vickers hardness test. A lamellar dislocation cell structure was formed...
متن کاملThe Effects of Martensite Thermomechanical Parameters on the Formation of Nano/Ultrafine Grained Structure in 201LN Stainless Steel
In this study, the effects cold rolling and annealing parameters during thermomechanical processing of the AISI 201LN stainless steel were investigated. The cast samples were homogenized, hot-rolled and solution-annealed to acquire a suitable microstructure for the subsequent thermomechanical treatment. Unidirectional and transverse multi-pass cold rolling at 25, 0 and -15 °C was carried out to...
متن کامل